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Model for plastic deformation and fracture in planar disordered materials
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The elastic-plastic behavior and fracture of disordered material under tensile elongation are
studied by a computer simulation model. A finite size analysis of the maximum stress shows very
significant residue values even for large system sizes and for the maximum disorder in the local
density. In the case of ideal plasticity we study various asymptotic behaviors and demonstrate that
increasing density disorder and weakening shear stiffness do not contribute to the effective disorder

in the same way as in the case of pure elasticity.

PACS number(s): 05.20.—y, 61.43.—j, 62.20.Fe

Recently fracture and breakdown phenomena of disor-
dered materials have received a considerable amount of
interest. This is understandable since mechanical prop-
erties of many materials are intimately controlled by dis-
order. There are two apparently different approaches:
one in which these phenomena are studied with analyt-
ical tools and the finite element method and the other
in which the effects of disorder are studied using simple
statistical models [1].

Prime examples of disordered materials are planar or
two-dimensional fibrous compounds such as paper, non-
woven textiles, polymers, and fiber reinforced materials.
However, an accurate description of these strongly disor-
dered materials by means of the finite element method
[2] is computationally expensive to allow statistical con-
siderations of strength and related properties. Further-
more, it is important to understand these phenomena for
a wide spectrum of length scales. For example, in fibrous
compounds the relevant length scale may range from a
microscopic subfiber level to a macroscopic level of large
fiber flocs.

Typical statistical models that deal with lattices of
bonds or other one-dimensional elements may be applied
to fibrous materials at the microscopic level [3]. How-
ever, at the level of mesoscopic disorder, these materi-
als are continuous and it is by no means clear how well
bond models can describe them. In addition, properties
and applicability of these materials depend not only on
their elastic but also their plastic behavior. With few ex-
ceptions [4], such nonlinear material behavior has been
ignored in statistical physics models.

J

In this paper we present an intermediate approach —
a simple statistical model that captures the essence of
the elastic-plastic behavior of disordered planar materi-
als under tensile elongation. The model describes dis-
ordered planar material at a mesoscopic level by a two-
dimensional lattice of adjoined initially square cells whose
microscopic structure (e.g., fibers) is averaged out lo-
cally. Disorder occurs as a coarse-grained density varia-
tion, which modulates the local elastic moduli. As a first
approximation the cell densities p;; are taken at random
from a uniform distribution [1 —d/2,1 + d/2], in which
d characterizes the degree of density disorder. In reality,
for disordered fibrous compounds the density distribu-
tion (as measured from, e.g., B radiograms) is Gauss-
ian at large length scales (weak disorder) and Poissonian
at small length scales (strong disorder). In reference to
the study by Hansen et al. [6] on the scale-invariance of
the distribution of breaking thresholds, we do not expect
these differences in the shape of the density distribution
to be relevant. As will be argued below, a wide den-
sity distribution can still give rise to a narrow threshold
distribution.

In the model, each cell is defined by the four nodes
at its corners, so any pair of neighboring cells share two
nodes in common. Thus the deformation of an individ-
ual cell inevitably deforms the neighboring cells as well.
Then the ease of deforming a cell can be described in
terms of the elastic energy of nodal displacements. The
sum over all individual cells defines the continuum me-
chanical energy functional of the system

H = Zaijpij {A(+y1+y2 —ys —ya — 7f,24ij + B(~y1 +y2 + Y3 — Ya + 7B1,; — WBzaj)z

+C(+y1 — Y2 +¥3 — ya — To1,; + Wczij)z} .

Here the variables y;, y2, y3, and y4 are the longitudinal
displacements of nodes defining the cell ¢j (cf. Fig. 1
for the labeling). The quantity p;; is the local density
and a;; denotes the integrity of the cell ij: oy; = 1 for
intact cells and a;; = 0 for completely failed cells. The
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prefactors A, B, and C depend on the Young modulus E
and the shear modulus G as A = $E, B = L(E + G),
and C = %G, respectively. It is noted that our model
assumes no tranverse deformations, because longitudinal
deformations are, on average, much larger. This choice
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FIG. 1. Three modes of deformation for an individual cell.
The external load is applied vertically. The terms with pref-
actors A, B, and C in the energy functional correspond to
(a), (b), and (c).

makes the Poisson ratio v = 0, but we expect the model
to capture the salient features of shearing in fibrous com-
pounds.

Although it might be possible to replace the cell of our
model with a group of properly interconnected springs
(we have not seen one), we believe that our approach is
simpler and computationally more efficient. As a clear
difference from simple spring models, our model includes
couplings also to next nearest neighbors. The straining
of a single weak cell is opposed by all neighboring cells
and so as a consequence local stresses are more evenly
distributed into its surroundings. On the other hand,
electrical analogies (see, e.g., [1]) with conductivity dis-
order can be equally misleading. Consider a case of a low
resistance fuse surrounded by high resistance fuses—the
behavior is just the opposite to what happens in a me-
chanical system. Furthermore, it is not clear how shear
stresses can be described with models of scalar nature.

Plasticity is implemented as the irreversible deforma-
tion of individual cells. This means that the energy func-
tional has to contain terms ensuring new minimum en-
ergy configurations for cells that have been strained be-
yond the plasticity threshold, i.e., the yield limit. Plastic
elongation 7 is defined separately for each deformation
mode in order to make the minimum energy configuration
unique. Initially all cells are intact, so that all the n’s are
zero. External strain is then increased step by step and
after every strain step k the lattice energy is minimized
by using the conjugate gradient method. This minimiza-
tion yields the nodal displacement field corresponding to
the minimum elastic energy. The possible plastic elonga-
tions for each cell are determinend as follows:

k

k

_ 1
o, = Mmax|m,

mh,, = max[rh T, (y1 + Y2 — ys —ya — 204)] ,
ngij = max[rg; .1‘., (y1 —ys —08)],
7ha,, = max[rizl, (y2 — ya — 0p)] ,
7, = max[rgy ), (y1 — ya — 6c)]
(&2

(yz — Y3 — 90)] .

Here the comparison with previous values (of step num-
ber k — 1) ensures the irreversibility of plastic defor-
mations. Furthermore, we propose a simplification that
cuts down the number of independent threshold param-

eters to one plastic yield limit:
2(1+ 6p)% — 1—1 = 205, where 6 is the plastic
strain threshold of the isotropic material. The value of
Oc arises from the diagonal strain of the cell. This sim-
plification is assumed to be valid especially in the case of
fibrous compounds.

With this framework of the ideally elastic-plastic
model it is simple to introduce the failure mechanism by
defining the failure limit 8y of a cell as a certain amount
of plastic deformation. If the failure threshold is set the
same as the yield limit, the model describes failure in an
elastic material. Note that the entire cell fails if any one
of the m terms becomes nonzero. This criterion frees us
from defining three different failure criteria for each de-
formation term — tensile, shear, and combined tensile-
shear strain — in the energy functional. An example of
another plausible failure criterion would be to use the to-
tal energy of a cell. This would probably lead to different
fracture paths. It is noted, however, that plastic defor-
mations cannot be defined uniquely by using the energy
criterion.

For the purpose of studying the scaling behavior of
an elastic-plastic system we varied the linear size L over
two orders of magnitude up to L = 400. In the trans-
verse direction we used either free or periodic boundary
conditions, but saw no significant effect on the finite size
scaling. First we investigate the elastic case and show
the scaling results of the stress-strain behavior in Fig. 2.
The scaling agrees with previous works [7,8] in which the
stress (i.e., external force over L) in the Hookean regime
is independent of the system size L. As is clear from this
figure, the data collapse is complete. However, for the
studied system sizes we do not see evidence for the sub-
tle In(L) correction [7], which would suggest the elastic
modulus to be independent of L. As a further test of
the finite size scaling behavior we determined the num-
ber of failed cells Ny at the maximum stress and found
Nj ~ LY when L — oo, in very good agreement with
previous studies [5,8].
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FIG. 2. Stress-strain curves of the elastic fracture system
with G/E = 025, E = 1, and d = 2 for system sizes
L = 12-400 averaged over 500-5 samples, respectively. The
breakdown strain threshold of cells is set to g = 0.2.
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An important difference between the results of elas-
tic bond model studies of averaged stress-strain curves
[5-8] and Fig. 2 for strong disorder and a small shear
modulus is that the former models depart from linear-
ity well before the maximum stress. However, our model
exhibits Hookean behavior nearly all the way to the max-
imum stress. Recently it has been shown that the widely
used “bond” averaging procedure leads te errors in the
averaged stress-strain curves [9], which in turn can en-
hance apparent nonlinearities. However, even a single
stress-strain test on a bond model may easily depart
from linearity [9]. To understand this difference we again
note that in our model nodes are more effectively coupled
than in bond models, including couplings to next nearest
neighbors as is likely in continuum materials. Therefore,
the local stress is more evenly distributed corresponding
to “weaker” disorder in terms of the breaking thresholds.
Furthermore, increasing the shear coupling G/FE made
the Hookean regime of the stress-strain curve longer. An
analogous effect was observed by Karttunen et al. [8] in
a simpler cell model. Thus we conclude that disordered
continuum materials, which show clear deviations from
linear behavior in the stress-strain curve, cannot be mod-
eled as a purely elastic system with a brittle fracture
mechanism.

As can be observed from Fig. 2, the decay of the max-
imum or fracture stress oy as a function of L seems to
slow down significantly and even stop for large values of
L. This tempted us to try a nonlinear least-squares fit of
the form oy ~ a + bL°. Of the fitting parameters (a, b,
and ¢) a could be interpreted as the remaining fracture
stress in the thermodynamic limit (should it be nonzero)
and c as the effective scaling exponent. As seen in Fig.
3, the fitting, with the exponent ¢ =~ —0.94, is accurate
over two orders of magnitude in L. The nonzero limiting
value (05 — 0.037 when L — oo and G/E = 0.25, E =1,
05 = 0.2, and d = 2) indicated by this power-law fit is
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FIG. 3. Finite size scaling of fracture stress oy of an elastic
system with G/E = 0.25, E = 1, 6 = 0.2, and d = 2. Dots
present the simulation data and error bars indicate standard
deviations. The solid line presents the exponential scaling
relation with ¢ = —0.94 and the dashed line is the logarithmic
form with ¢ = 0.04.

consistent with our previous work [8], in which oy — 0
only when the “shear” coupling between cells was zero.
On the other hand, for percolation systems it has been
suggested [10] that the fracture stress o should vanish
logarithmically as 05 ~ 1/[a+b(InL)¢], with1/2 <c¢ <1
in two dimensions. An attempt to do this kind of fit by
demanding ¢ > 0 and omitting data points L < 20 is
shown in Fig. 3 by the dashed line. Although this fit falls
within the error bars, it is not as good as the power-law
fit. It is noted, however, that our present model differs
from the percolation model in that the probability of a
cell to have zero density is extremely small (in fact of
zero measure), while in the percolation case it is not. In
addition, as indicated above, our model has a greater ten-
dency to distribute stress to the wider neighborhood of a
cell than bond models. Whether these differences are suf-
ficient to cause different scaling behaviors is beyond the
studied system sizes. Nevertheless, since our model of
mesoscopic or macroscopic cells corresponds to realistic
system sizes, the large residue failure stress (almost one-
fifth of the ideal maximum strength of Efy for d = 0) is
a finding of experimental and technological significance.

In Fig. 4 we show the effect of disorder on the elastic-
plastic system, where the cells never break. Thick lines
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FIG. 4. Stress (thick lines) and number of plastic cells
(thin lines) against external strain for (a) d = 0,1,2 and
G/E = 0.25 and (b) d = 2 and G/E = 0.125,0.25,1. The
system size L = 50, the yield strain 6, = 0.01, and the mod-
ulus £ = 1.
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present the stress o and thin lines the number of plastic
cells V) against the external strain. The degree of dis-
order d [Fig. 4(a)] and the relative shear modulus G/E
are varied [Fig. 4(b)]. For the homogeneous system (no
disorder d = 0) the stress-strain curve is piecewise linear,
divided into a pure Hookean regime and ideally plastic
regime. In this case all the cells of the system become
plastic simultaneously at the yield limit. For disordered
systems, however, the plastization occurs gradually. The
deviation from the piecewise linear behavior is larger, for
either larger d values or smaller G/F ratios. In addition,
increasing the degree of disorder d decreases the asymp-
totic total number of plastic cells NV at large strains.
This is because the plastic cells tend to form bands across
the system. Increasing disorder makes the system sta-
tistically weaker and hence one band begins to domi-
nate at smaller value of external strain. On the other
hand, when G/E decreases (i.e., shear deformations be-
come more likely), the asymptotic stress value decreases.
At the same time IVj increases. This happens because
easier shearing makes the plastic bands across the sys-
tem more complex, but easier to find. We conclude that
increasing density disorder and weakening shear stiffness
do not contribute to effective disorder the same way as
in the case of pure elasticity [8].

We have also studied the size dependence of ideal plas-
ticity. To our knowledge, the only statistical account
for a disordered plastic system is the electrical random
resistor-network analogy of Roux and Hansen [4]. It was
predicted that in the case corresponding to d = 2, the
asymptotic total number of plastic cells should become
constant (Z\/'r‘,’f’/L2 = 0.27) as the system size L increases.
In agreement with that, we found that the concentration
of plastic cells did not change significantly. However,
from Fig. 4 it is evident that in our case the asymptotic
values of N, are much larger than those predicted by
Roux and Hansen. In the limit of a homogeneous sys-

tem d = 0, all the cells become plastic or NI‘)’f’/L2 = 1.
Also, our work on the effective medium approximation
[11] implies that N“)’l"/L2 > 0.375 — 0.4, depending on
the elastic moduli ratio G/E. However, our findings are
consistent with those of Roux and Hansen if the relative
“weakness” of disorder in our continuum model is taken
into account.

Our results also suggest that in a continuum material
with disorder, IV, becomes constant only at asymptot-
ically large strain € — oco. It is only in this limit that
all further elongation of the system occurs in a plastic
band. In order to see this, suppose that at some point a
path of plasticized cells is formed across the system. As
the external strain increases, the elongation of the plas-
tic cells increases. If there are any kinks in the plastic
band, the elastic cells next to plastic ones will eventually
be taken beyond the yield limit. Then, as the external
strain increases, kinks in the plastic band travel across
the system so long that they all annihilate each other or
disappear at the boundaries. Thus the plastic band will
“swell” in width [12]. It seems that in the thermody-
namic limit L — oo this swelling process stops perhaps
only at € — oo. The precise strain dependence of Ny,
would hence be needed for determining the size depen-
dence of the asymptotic value N77. In reality the system
would of course fail well before this. Studies on local-
ization of plastic deformations as well as the interplay of
plasticity and fracture will be reported in the future [11].
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